FAST SETTLING, VIDEO OP AMP WITH DISABLE

General Description

The current-feedback CLC410 is a fast-settling, wideband, monolithic op amp with fast disable/enable feature. Designed for low-gain applications (Av $= \pm 1$ to ± 8), the CLC410 consumes only 160 mW of power (180 mW max) yet provides a -3 dB bandwidth of 200 MHz (Av $=+2$) and 0.05% settling in 12 ns (15ns max). Plus, the disable feature provides fast turn-on (100 ns) and turn-off (200 ns). In addition, the CLC410 offers both high performance and stability without compensation, even at a gain of +1.
The CLC410 provides a simple, high-performance solution for video switching and distribution applications, especially where analog buses benefit from use of the disable function to "multiplex" signals onto the bus. Differential gain/phase of $0.01 \% / 0.01$ provide high fidelity and the 70 mA output current offers ample drive capability.
The CLC410's fast settling, low distortion, and high drive capabilities make it an ideal ADC driver. The low 160 mW quiescent power consumption and very low 40 mW disabled power consumption suggest use where power is critical and/or "system off" power consumption must be minimized.

Industry Part Number CLC410A

NS Part Numbers

CLC410AJ-QML

Prime Die

UB1286C

Controlling Document

5962-9060001PA

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection
MIL-STD-883, Method 5005

Subgrp Description Static tests at Dynamic tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Functional tests at Switching tests at Switching tests at Switching tests at

1 Static tests at Static tests at
2

Temp ($\left.{ }^{\circ} \mathbf{C}\right)$	
+25	
+125	
-55	
+25	
+125	
-55	
+25	
+125	
-55	
+25	
+125	
-55	

Features

- -3 dB bandwidth of 200 MHz
- 0.05\% settling in 12 ns
- Low power, 160 mW (40 mW disabled)
- Low distortion, -60 dBc at 20 MHz
- Fast disable (200ns)
- Differential gain/phase: 0.01\%/0.01 deg
- ± 1 to ± 8 closed-loop gain range

Applications

- Video switching and distribution
- Analog bus driving (with disable)
- Low power "standby" using disable
- Fast, precision A/D conversion
- D/A current-to-voltage conversion
- IF processors
- High-speed communications

(Absolute Maximum Ratings)
 (Note 1)

Recommended Operating Conditions

Supply Voltage (Vs)	$\pm 5 \mathrm{~V}$ dc
Gain Range (Av)	± 1 to ± 8
Ambient Operating Temperature Range (Ta)	-55 C to +125 C

Electrical Characteristics

AC/DC PARAMETERS: ELECTRICAL CHARACTERISTICS

(The following conditions apply to all the following parameters, unless otherwise specified.)
$\mathrm{DC}: \quad \mathrm{Vs}= \pm 5 \mathrm{~V}$ dc, $\mathrm{Av}=+2$, load resistance ($\mathrm{Rl}=1000 \mathrm{hms}$), feedback resistance (Rf) $=250 \mathrm{Ohms}$, gain setting resistance $(\mathrm{Rg})=250$ hms. $-55 \mathrm{C} \leq \mathrm{Ta} \leq+125 \mathrm{C}$ (Note 3).

SYMBOL	PARAMETER	CONDITIONS	NOTES	$\begin{aligned} & \text { PIN- } \\ & \text { NAME } \end{aligned}$	MIN	MAX	UNIT	SUBGROUPS
+Iin	Input Bias Current (noninverting)				-20	+20	uA	1, 2
					-36	+36	uA	3
-Iin	Input Bias Current (Inverting)				-20	+20	uA	1
					-30	+30	uA	2
					-36	+36	uA	3
Vio	Input Offset Voltage	$\mathrm{Rs}=50 \mathrm{Ohms}$			-5.0	+5.0	mV	1
					-9.0	+9.0	mV	2
					-8.2	+8.2	mV	3
Tc (+Iin)	$\begin{aligned} & \text { Average +Input } \\ & \text { Bias Current } \\ & \text { Drift } \end{aligned}$		1		-100	+100	nA/C	2
			1		-200	+200	nA/C	3
Tc (-Iin)	Average -Input Bias Current Drift		1		-100	+100	nA/C	2
			1		-200	+200	nA/C	3
Tc (Vio)	Average Offset Voltage Drift		1		-40	+40	uV/C	2, 3
Is	Supply Current	No Load				18	mA	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{Vs+}=+4.5 \mathrm{~V} \text { to }+5.0 \mathrm{~V}, \mathrm{Vs}-=-4.5 \mathrm{~V} \text { to } \\ & -5.0 \mathrm{~V} \end{aligned}$			45		dB	$\begin{array}{ll} 1,2, \\ 3 \end{array}$
CMRR	Common Mode Rejection Ratio	$\mathrm{Vcm}= \pm 1 \mathrm{~V}$	1		45		dB	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
SSBW	Small Signal Bandwidth	-3 dB bandwidth, Vout < 0.5 Vpp			150		MHz	4
			2		120		MHz	5
			2		150		MHz	6
GFPL	Gain Flatness Peaking Low	At 0.1 Mhz to 40 MHz				0.3	dB	4
			2			0.4	dB	5, 6
GFPH	Gain Flatness Peaking High	At > 40 MHz				0.5	dB	4
			2			0.7	dB	5, 6
GFR	Gain Flatness Rolloff	At 0.1 Mhz to 75 MHz				1	dB	4
			2			1.3	dB	5
			2			1	dB	6

Electrical Characteristics

AC/DC PARAMETERS: ELECTRICAL CHARACTERISTICS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Vs $= \pm 5 \mathrm{~V}$ dc, $\mathrm{Av}=+2$, load resistance ($\mathrm{Rl}=1000 \mathrm{hms}$), feedback resistance (Rf) $=2500 \mathrm{hms}$, gain setting resistance (Rg) $=2500 \mathrm{hms}-.55 \mathrm{C} \leq \mathrm{Ta} \leq+125 \mathrm{C}$ (Note 3).

Electrical Characteristics

AC/DC PARAMETERS: ELECTRICAL CHARACTERISTICS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
$\mathrm{DC}: \mathrm{Vs}= \pm 5 \mathrm{~V}$ dc, $\mathrm{Av}=+2$, load resistance ($\mathrm{Rl}=1000 \mathrm{hms}$), feedback resistance (Rf) $=2500 \mathrm{hms}$, gain setting resistance (Rg) $=2500 \mathrm{hms} .-55 \mathrm{C} \leq \mathrm{Ta} \leq+125 \mathrm{C}$ (Note 3).

SYMBOL	PARAMETER	CONDITIONS	NOTES	PINNAME	MIN	MAX	UNIT	$\begin{aligned} & \text { SUB- } \\ & \text { GROUPS } \end{aligned}$
Vout	Output Voltage Swing	$\mathrm{Rl}=100$ Ohms	2		2.8		V	4, 5
			2		2.3		V	6
SR	Slew Rate	Measured $\pm 1 \mathrm{~V}$ with $\pm 3 \mathrm{~V}$ step, Av $=$ +2	1		430		V/uS	$\begin{array}{ll} 4,5, \\ 6 \end{array}$
ts	Settling Time	2 V step at 0.1% of the fixed value	1			13	ns	$\begin{array}{ll} 9, & 10, \\ 11 & \end{array}$
		2 V step at 0.05% of the fixed value	1			15	ns	$\begin{array}{ll} 9, & 10, \\ 11 \end{array}$
OS	Overshoot	0.5 V step	1			10	\%	9, 10
			1			15	\%	11

Note 1: If not tested, shall be guaranteed to the limits specified in table 1 herein. Note 2: Group A sample tested only.
Note 3: The algebraic convention, whereby the most negative value is a minimum and most positive is a maximum, is used in this table. Negative current shall be defined as convential current flow out of a device terminal.

Graphics and Diagrams

GRAPHICS\#		DESCRIPTION
07081HRA3	CERDIP (J), 8 LEAD (B/I CKT)	
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)	
P000416A	CERDIP (J), 8 LEAD (PINOUT)	

See attached graphics following this page.

CLC410J 8 - LEAD DIP
 CONNECTION DIAGRAM
 TOP VIEW

P000416A

MIL/AEROSPACE OPERATIONS
2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

Revision History

Rev	ECN \#	Rel Date	Originator	Changes
0 AO	M0003072	$07 / 19 / 99$	Shaw Mead	Initial MDS Release

